Looking for a specific product?

Make a search for products & suppliers, articles & news.

Warmer climate – fewer polar low-pressure systems to hit Norway

Severe storms along the Norwegian coastline and in the Norwegian Sea are often caused by polar low-pressure systems. Roughly half of all such storms have their origin in low-pressure systems formed above the sea ice covering the Arctic.

Each winter, an average of 12 polar low-pressure systems develop above the marine areas off northern Norway. These systems can move as far south as the UK.

Photo: Erik Kolstad What project researchers saw as they flew over a polar low-pressure system at an altitude of 10 000 metres. (Photo: Erik Kolstad)

Difficult to forecast

Meteorologists can predict other powerful low-pressure systems that are preceded by strong winds days in advance. But there are few early indications of the formation of polar low-pressure systems, which often develop so suddenly that ships’ crews are caught unaware, causing many shipwrecks. Both at sea and along the coastline, polar low-pressure systems often bring major snowfall as well.

In recent years, however, Arctic sea ice cover has declined, and a warming climate may exacerbate this even more. This could lead to fewer polar low-pressure systems – and fewer gale-force winds, storms and hurricanes in the northern areas.

Storms farther north

In the research project The Effect of Climate Change on Arctic High-Impact Weather Events (ArcChange), scientists studied relationships between climate change and polar low-pressure systems. The project received funding from the Research Council of Norway’s Large-scale Programme on Climate Change and its Impacts in Norway (NORKLIMA).

“We believe the frequency of polar low-pressure systems heading toward Norway will drop. As the extent of sea ice declines in the Arctic, the low-pressure systems should move farther north, missing the Norwegian mainland more. Svalbard, however, may be hit by polar low-pressure systems in the future,” explains Researcher Øyvind Sætra of the Norwegian Meteorological Institute.

Photo: ArcChange A polar low-pressure system seen from the ground. (Photo: ArcChange)

Arctic cyclones

Polar low-pressure systems form when extremely cold, dry Arctic air is carried from ice-covered polar regions and across warmer ocean surfaces. The temperature gradient between the air and water can reach up to 20°C – a temperature shock that creates atmospheric chaos and forms an Arctic cyclone, similar to but smaller than its tropical cousin.

There are forces constantly at work to equalise the difference in temperature between water and air. Vast amounts of energy escape the ocean in the form of heat within water vapor – enough, in fact, to power a cyclone.

Energy from the ocean

The ArcChange project has given researchers a whole new level of understanding about how the ocean supplies the energy for polar low-pressure systems. Knowledge about the dynamics of heat energy transfer from marine waters to the atmosphere is vital to international climate research.

During the project, researchers isolated the various physical processes of a polar low-pressure system. This has led to a better understanding of the role of factors such as waves and wind in the development of a cyclone.

Photo: Wikimedia Commons Notice the cyclone shape as a polar low-pressure system hits the coast of Finnmark, Norway’s northernmost county. At the top of the photo, the southern tip of Svalbard is visible. (Photo: Wikimedia Commons)

Wind is to blame

By dropping a total of 147 sondes (atmospheric sensors) into a cyclone from an altitude of 10 000 metres, the researchers were able to map the entire two-day progression of a polar low-pressure system. The team created a three-dimensional depiction of the pressure system; this data could prove valuable in future research.

“A common hypothesis,” says Dr Sætra, “has held that preceding the formation of a polar low-pressure system, the air down near the marine surface amasses huge amounts of what we geophysicists call CAPE (convectively available potential energy). But we found no such CAPE when we released our sondes to float down through the storm, so we have now concluded that it must be the wind that whips up the entire energy transport from the ocean to the air.”

Warmer ocean temperatures not a factor

Until now, many climatologists have believed that global warming and higher ocean temperatures would cause the transfer of more energy from the water to the atmosphere, stirring up higher winds and more storms.

The ArcChange researchers believe that higher marine temperatures have practically no impact on polar low-pressure systems, because in a warmer climate the atmosphere is warmed more quickly than the water. Thus the temperature gradient between the ocean and atmosphere would be more likely to decrease rather than increase.

The ArcChange project
The ArcChange project was a collaboration between scientists from the Norwegian Meteorological Institute, the Department of Physics and Technology at the University of Bergen, and the Bjerknes Centre for Climate Research in Bergen.

 

 

 

Related news

Latest news

Midtnorsk Havbruk chooses concrete barge from Steinsvik

The barge is the fourth in the Steinsvik’s concrete barge series.

New technical trainee blogpost: Furnaces, pumps and robots

Adam has just finished his second trainee rotation in Kristiansand

The Norwegian network of United Nations Global Compact launched today

Lise Kingo, CEO and Executive Director of the UNGC,

DNV GL and Goldwind join forces on development of digital certification tools

MyCertificate is the first digital certification solution for wind turbines,

DNV GL leads consortium to update Carbon Trust Floating LiDAR Roadmap

DNV GL, the world’s largest resource of independent energy experts and certification body,

PRESS RELEASE: Servogear to propel Asian built windfarm vessels

The contract with Cheoy Lee Shipyards was signed in Q2 2018.

SERVICEBULLETIN: Grease filling of the propeller system

SERVICEBULLETIN 180921: Grease filling of the propeller system

FILM: The world´s first HD220 gearbox returns for an overhauling

The gearbox has been operating flawlessly for more than 20.000 hours...

Øveraasen delivers machine number 66 to New York

Totally over the last ten years,