Looking for a specific product?

Make a search for products & suppliers, articles & news.

Super first feed soon ready to serve

Researchers are confident it will soon be possible to produce copepod eggs on an industrial scale, which would solve several challenges in fry production and improve quality and survival of marine production fish larvae, such as Ballan wrasse, halibut, turbot and cod. Industrial production of copepod eggs could open the door to producing new marine species that are difficult to farm using conventional live feed.

Copepods

When placed in oxygen-rich seawater, the copepod eggs hatch within 24 hours. (Photo: Sintef) 

Faith in industry

Researchers at SINTEF and the Norwegian University of Science and Technology (NTNU) are already producing copepod eggs intensively for their experiments with various species of marine fish larvae. Female copepods produce 30-50 eggs per day for up to 50 days.

So far the researchers have been able to utilise a fraction of this production, but the potential is enormous: in theory, starting with just three copepods per millilitre of water in a 10-m3 tank, 450-825 million eggs could be produced per day, assuming equal numbers of males and females in the tank.

Gunvor Øie Project manager Gunvor Øie of SINTEF Fisheries and Aquaculture is confident that commercial production of copepod eggs is feasible. (Photo: Torkil Marsdal Hanssen)

“Copepods are currently fed live microalgae,” explains project manager Gunvor Øie of SINTEF Fisheries and Aquaculture.

“We are collaborating with microalgae producers on developing a special feed in paste form that will provide more control over feeding. In addition we believe we can increase the ratio of females in the production tanks. Cost-effective, stable, predictable production of copepod eggs, however, will require upscaling, further technology development and automation of processes – which we are very optimistic about.”

Just add seawater…

The researchers have found that older, properly stored eggs hatch just as well as fresh eggs. When harvested, the eggs are placed in bottles of oxygen-free seawater and stored in a dark refrigerator.

“The eggs can be stored like this for at least seven months,” explains Dr Øie. “When a farm’s fish larvae need copepods, the desired number of eggs can be transferred to oxygen-rich seawater and will hatch within 24 hours.”

Industrial production of copepod eggs will allow greater control over nutritional composition. The eggs can also be disinfected against parasites, bacteria and viruses.

“We know that a diet of copepods substantially improves fry quality in species such as Ballan wrasse, cod and halibut,” continues Dr Øie.

“Industrial production also opens up possibilities for farming new marine species for which fry production has proved difficult – such as with tuna, groupers and aquarium fish. Using our copepods, for instance, mandarinfish have now been bred in captivity for the first time.”

Copepod eggs Copepod eggs are harvested from the tank floor daily, then washed and stored in refrigeration for up to several months. (Photo: Sintef)

Copepod facts
  • The copepod subclass comprises thousands of species. They are crustaceans, typically 1-2 mm long, and are a natural source of food for marine fish species in the wild.
  • A diet of copepods promotes faster growth, improves survival and results in fewer malformations in production fish larvae than a diet of rotifers (rotifera) and artemia (crustaceans), which are currently the two most commonly used first-feed species.
  • Copepods can be harvested by filtering seawater, but their abundance varies with the season and weather conditions, and filtering provides little control over species composition, nutritional content, parasites, bacteria or viruses.
  • The research being carried out now is funded by the Norwegian Seafood Research Fund and is managed by the Ballan wrasse producers.

Associated companies:


 

Related news

Latest news

Over 45,000 businesses risk EU energy fines for non-compliance

The previous compliance date of 5th December 2015,

“An Incredibly reliable net cleaning system”

Our predator nets are prone to fouling with scallops and mussels,

“An Incredibly reliable net cleaning system”

Good knowledge enables the customer to get the most out of the product. 

DNV GL initiates energy storage standard for Australia

DNV GL will lead the project and prepare a draft proposal for the standard,

Kvale acts for foreign ship owners in a direct action case

The case is against a Norwegian P&I underwriter and the alleged tortfeasor following a collision in the Singapore strait. Recently, the Supreme Court rendered a verdict on the issue of whether Norwegian courts hav...

Kvale recognized by IAM Patent 1000 2018

Kvale's IP-team receives great review from IAM Patent 1000 "The world's leading patent professionals 2018". 

Positive winds at the SeaWork International trade fair

- This is the place to be,

DNV GL and Brodosplit sign class contract for Quark polar expedition vessel

Quark has a long history of civilian polar exploration.

Elkem sustainability magazine 2017 and GRI report for 2017 is ready

Corporate social responsibility is one of the building...