Looking for a specific product?

Make a search for products & suppliers, articles & news.

Nano-Needles for Cells: Forcing medicine into resisting cells

Nano-sized needles developed by researchers at the Norwegian University of Science and Technology (NTNU) in Trondheim can force medicine into cells, even when the cell membranes offer resistance. The needles will make it easier to study the effects of medicines on cells.

Physicist Pawel Sikorski and his group are making beds of nails on a miniature scale -- a plate covered in nano-needles designed to puncture individual cells.

It sounds a bit painful, but none of these needles will be going directly into your body, because the test subjects are cells under the microscope. The researchers are working to develop advanced tools to understand what goes on inside the body's cells.

"These nano-needles will make medical research more efficient," he says.

Cells gobble up medicine

One way to understand how different molecules influence cell function is to deliver the molecules directly into cells and study the effect. Traditionally, this kind of research is done by first placing many different substances on a glass or other surface to study their effect on the cells of interest.

The substances might be a potential anticancer drug that works by affecting the cell's genetic material, or a molecule that will switch off a particular gene inside the cell. The researchers then cultivate cells on top of the potential medicine. Some of the cells will absorb the medicine, and the researchers can monitor the changes in the cells caused by the different drugs. But in many cases this method does not work very well, because some of the cells don't want to take their medicine.

"With the new method, we attach molecules of the drug being tested to the tips of the nano-needles, and then inject it the same way you would with an ordinary medical syringe," says Sikorski.

Grey grass and smart cells

The researchers create the nano-needles in a small ceramic oven. In goes something that looks like aluminium foil with a small burnt patch on it (which is actually a wafer-thin piece of copper), and two hours later at 500 degrees, the copper reacts with oxygen in the heat, creating copper oxide.

The final product looks like grey grass under the microscope, but the grass is actually the nano-needles. The next step is to put something similar to tallow onto the needles so that they can be removed from the copper plate. Glass is glued to the bottom, so that everything is transparent. The finished product looks like a small, round bed of nails. Researchers can now put cells on top of the nano-needles, and see if test drugs can be injected into cells.

But some cells are trying to fool scientists. While some cells readily impale on the nano-needles, others encapsulate the needles and grow around them.

"We are currently working on finding the correct methods to insert the needles, to ensure that all of the cells are impaled," says Sikorski.

Nobody else in Norway is making nano-needles like these. The NTNU researchers are also the first group in the world to develop an even larger-size copper surface with nano-needles.

 

(Source: Science Daily

Related news

Latest news

Eimskip strengthens its worldwide forwarding services by acquiring the logistics company SHIP-LOG A/S in Denmark

Eimskip has strengthened its position in worldwide logistics services by acquiring 75% of the freight forwarding company SHIP-LOG. 

For Sale Assets from the former BMV LAKSEVÄG YARD in Bergen, Norway!

For Sale Assets from the former BMV LAKSEVÄG YARD in Bergen, Norway! The entire shipbuilding and fabricating facility is closing and more than 500 lots is on sale.

Servogear CPP for Seasight II - Future of the Fjords

We are proud to announce that Servogear has been chosen for the delivery of Servogear...

TechnipFMC Signs Agreement with Pall to Supply Slurry Oil Filtration Systems for Fluid Catalytic Cracking Units

The associated activities will be managed by TechnipFMC Process Technology’s center in Houston,

10 Million kroner for verification funding

The Norwegian Research Council has granted 10 million...

Hilti acquires Oglaend System Group

Oglaend System’s headquarters will remain in Klepp, 

DOF Subsea AS ("DOF Subsea" or the "Company") today announces its intention to launch an initial public offering (the "IPO") of its ordinary shares and to apply for a listing on Oslo Børs

NOT FOR DISTRIBUTION OR RELEASE,

DOF Subsea North America extends charter for Jones Act Compliant vessel Harvey Deep Sea

The Harvey Deep Sea Vessel is a Multi-Purpose DPII Construction,

Untrue rumours about an on-going incident at the Halden Research Reactor in Norway

The Norwegian Radiation Protection Authority has become aware that stories about an ongoing incident involving a “meltdown” at the Norwegian Institute for Energy Technology (IFE) reactor situated in Halden are currently ci...