Looking for a specific product?

Make a search for products & suppliers, articles & news.

Finalist: Erlend Lunde Runestad

Erlend Lunde Runestad, 19 år, Trondheim
Skole: NTNU

SHS synthesis and analysis of TiB2 and WB4 using powder XRD and SEM

 

This project is a culmination of several years of extracurricular work with self-propagating high temperature synthesis of metal rich borides. Self-propagating high temperature synthesis (SHS), is a type of chemical reaction that involves a self-sustaining exothermic process. In this study, the reaction between titanium or wolfram and two different allotropes of boron was carried out, to produce titanium diboride and wolfram borides, respectively.

Ti(s)+2B(s) -> TiB2(s)
W(s)+4B(s) -> WB4(s)

The experiments were set up to investigate the validity of the reactions and also the composition and properties of the resulting material. This also includes investigating the difference between reactions carried out with metallic or amorphous boron and also with the use of varying ignition sources. SHS reactions are carried out at very high temperatures. For example, the ignition temperature for an SHS reaction to produce titanium diboride is approximately 1000°C.

Three methods for ignition and heating were used: An oxygen-acetylene torch, an electric muffle furnace, and also an electric arc with wolfram electrodes. In addition to this, two main methods of analysis were used, including powder x-ray diffraction and scanning electron microscopy. The products of these reactions were mostly porous, except the samples from the electric arc method. Only the reactions with amorphous boron were noted to be self-propagating, as the metallic boron (β-boron) was much less reactive.

The SEM pictures revealed hexagonal TiB2 crystals, and also the presence of hollow hexagonal crystal formations. This means that the sample was porous at both a macroscopic and microscopic level. The XRD analyses proved three major points. Firstly, all three methods and both boron allotropes were able to produce titanium diboride. However, the methods using amorphous boron produced the most pure and uniform samples of titanium diboride, while the metallic boron methods contained many oxide and nitride impurities. Secondly, the methods using metallic boron and electric arc heating seemed to produce different amounts of nitride impurities depending on their exposure to air. This concludes that these reactions should be performed in an inert atmosphere. Lastly, the wolfram tetraboride tests suggested that most of the wolfram did not react and also formed W2B5 instead of WB4.

For future experiments, it could be beneficial to recreate the muffle furnace experiments, to further study the hollow hexagonal crystals created. The hollow crystals could potentially give an extremely porous material with an enormous surface area, which is very beneficial for catalytic purposes.

 

 

 

Related news

Latest news

New Zealand Navy turns to Vestdavit for hands-on experience

Since 2000, Vestdavit has supplied 14 davits for seven NZ Navy vessels.

DNV GL and AEP Ohio win Energy Award for helping new energy efficient technology in ultra-low temperature freezers reach the market

Stirling ultra-low temperature freezers now ENERGY STAR certified

New 4K Displays Enable Cutting-Edge Multi-Data Fishing Vessel Bridge Solution from Furuno Norway

Newbuild Danish trawler 'Gitte Henning' first to benefit from large-format, ultra high definition bridge display innovation.

New DNV GL class notations aim to improve stern tube bearing performance

In the “Shaft align” class notations and the revised main class requirements for single stern tube bearing installations,

DNV GL provides due diligence to institutional lenders for investment in 659 MW Walney offshore wind project

Through DNV GL’s technical assessment to the group of lenders,

Welcome to the new service centre in Rørvik!

OK Marine will sell and offer service of its recognized cleaning fish products.

DNV GL boosts investment in 3D printing with establishment of Global Additive Manufacturing Centre of Excellence in Singapore

Through the newly established centre, DNV GL is running the recently announced collaboration with Sembcorp Marine,

DNV GL advised Partners Group on technical risks in its investment in Borssele III-IV

Due diligence on Dutch offshore wind project focused on technical risks.

Next generation hull calculation software: DNV GL launches Nauticus Hull version V20

With new ship rules and IACS requirements increasing the scope of hull design,