Looking for a specific product?

Make a search for products & suppliers, articles & news.

Finalist: Erlend Lunde Runestad

Erlend Lunde Runestad, 19 år, Trondheim
Skole: NTNU

SHS synthesis and analysis of TiB2 and WB4 using powder XRD and SEM

 

This project is a culmination of several years of extracurricular work with self-propagating high temperature synthesis of metal rich borides. Self-propagating high temperature synthesis (SHS), is a type of chemical reaction that involves a self-sustaining exothermic process. In this study, the reaction between titanium or wolfram and two different allotropes of boron was carried out, to produce titanium diboride and wolfram borides, respectively.

Ti(s)+2B(s) -> TiB2(s)
W(s)+4B(s) -> WB4(s)

The experiments were set up to investigate the validity of the reactions and also the composition and properties of the resulting material. This also includes investigating the difference between reactions carried out with metallic or amorphous boron and also with the use of varying ignition sources. SHS reactions are carried out at very high temperatures. For example, the ignition temperature for an SHS reaction to produce titanium diboride is approximately 1000°C.

Three methods for ignition and heating were used: An oxygen-acetylene torch, an electric muffle furnace, and also an electric arc with wolfram electrodes. In addition to this, two main methods of analysis were used, including powder x-ray diffraction and scanning electron microscopy. The products of these reactions were mostly porous, except the samples from the electric arc method. Only the reactions with amorphous boron were noted to be self-propagating, as the metallic boron (β-boron) was much less reactive.

The SEM pictures revealed hexagonal TiB2 crystals, and also the presence of hollow hexagonal crystal formations. This means that the sample was porous at both a macroscopic and microscopic level. The XRD analyses proved three major points. Firstly, all three methods and both boron allotropes were able to produce titanium diboride. However, the methods using amorphous boron produced the most pure and uniform samples of titanium diboride, while the metallic boron methods contained many oxide and nitride impurities. Secondly, the methods using metallic boron and electric arc heating seemed to produce different amounts of nitride impurities depending on their exposure to air. This concludes that these reactions should be performed in an inert atmosphere. Lastly, the wolfram tetraboride tests suggested that most of the wolfram did not react and also formed W2B5 instead of WB4.

For future experiments, it could be beneficial to recreate the muffle furnace experiments, to further study the hollow hexagonal crystals created. The hollow crystals could potentially give an extremely porous material with an enormous surface area, which is very beneficial for catalytic purposes.

 

 

 

Related news

Latest news

First phase of DNV GL led offshore cable and pipeline operations equipment joint industry project completed

The data analysed during phase 1 has identified and recorded various processes...

The end of the paper chase: DNV GL to roll out electronic certificates across entire fleet

Certificates are published on DNV GL’s customer portal immediately after an onboard survey is completed,

New Integrated Solution Set to Redefine DP Reference Systems

DPS i2 and DPS i4 utilise KONGSBERG's unique motion gyro compass (MGCTM) and motion reference unit (MRUTM) technology.

Servogear service hub in Asia

September 2017, Servogear announce the strengthening of our presence in Asia with the establishment of a service hub in Singapore.

New Machining Center In Fredrikstad

Jotne opened a brand new machining hall in Fredrikstad on the 20th of May.

Construction and Testing of 4 Caterpillar C280 Gensets Finalized

Jotne has together with thier client Pon Power finalized construction and testing of 4 Caterpillar C280 gensets in Jotne’s factory in Fredrikstad. 

DNV GL acquires specialist in CFD for fire and explosion analysis, ComputITG

With its roots in the offshore sector,

New land based contract with Sisomar

Sisomar’s philosophy is close to AKVA group’s underlying strategy to develop technological solutions based on good fish health and solid biology. 

Geothermal energy- an answer for selected areas in Poland

During the last weeks the experts have visited the selected sites in Poland and also been on a study visit to Iceland.