Looking for a specific product?

Make a search for products & suppliers, articles & news.

Cold wind makes Norwegian Sea warmer

Norwegian researchers have discovered a previously unknown climate relationship in the seas off Norway: cold wind from the north makes warm waters from the south flow northward along the Norwegian coastline.

They explain the phenomenon in this way:

1) Northerlies from the Arctic force large volumes of water southward through the Denmark Strait between Iceland and Greenland.
2) As this water flows southward, the water level of the Norwegian Sea drops.
3) The water that has left the Norwegian Sea must be replaced by new water masses, so enormous amounts of warm water from the south flow into the Norwegian Sea.

Photo: Shutterstock Cold winds blowing south from the Arctic also play a major role in the reduction of Arctic ice cover. (Photo: Shutterstock)

The Gulf Stream enters the Norwegian Sea between Iceland, the Faroe Islands and Scotland. Every second, 8-9 million cubic metres of northbound Atlantic Ocean water flows through this area. By comparison, a total of 1.2 million cubic metres of water per second runs into the sea from all the world’s rivers combined.

Refutes previous research

Iselin Medhaug is a post-doctoral fellow at the Bjerknes Centre for Climate Research in Bergen. With the help of funding from the Research Council of Norway’s large-scale programme on Climate Change and its Impacts in Norway (NORKLIMA), Medhaug completed her doctoral degree at the University of Bergen, where she is studying climate dynamics.

The seemingly paradoxical finding that she and her colleagues have made contradicts conventional thinking: it has long been thought that the Gulf Stream, which brings waters from tropical regions in the Atlantic Ocean up to the Norwegian Sea, is primarily driven by winds from the south in combination with sinking water masses in the north.

Photo: Jan Kåre Wilhelmsen Iselin Medhaug has shown how the Gulf Stream is pulled northwards as northerly winds cause the evacuation of water from the Norwegian Sea. (Photo: Jan Kåre Wilhelmsen)

“But when we began to calculate the situation using advanced climate models with data from a number of observations,” explains Dr Medhaug, “we discovered that it is actually cold winds from the Arctic that drive much of the process of getting tropical waters in the Gulf Stream to flow northward towards the Norwegian coastline.”

Replacing lost waters

To understand how humans affect the climate, more knowledge needs to be generated about natural climate change. Recent research has shown that the climate in Norway and its outlying marine areas is greatly influenced by major, natural fluctuations occurring in both the Atlantic Ocean and the atmosphere above it.

Dr Medhaug’s calculations show that the winds from the southwest play a weaker role in driving the Gulf Stream towards Norway than previously thought. Instead, it is the northerlies that “pull” the waters northward by emptying water masses out of the Norwegian Sea.

“The strong current northward off the Norwegian coastline is to a great extent the result of a compensation for water that has flowed away, southward between Greenland and Iceland,” continues Dr Medhaug.

Wind reduces Arctic ice

The declining sea ice in the Arctic has been a key topic of discussion concerning the extent to which global warming is caused by human activity.

Now the researchers can confirm that winds from the Arctic are also a key cause of reductions in summer ice in Arctic regions. The winds, together with the southward-flowing Greenland Current (beneath the ice), move the ice southward along both sides of Greenland.

It is thus quite possible that the reductions in ice cover may largely be attributed to natural changes in wind conditions. It cannot be ruled out, however, that anthropogenic changes in climate are one of the factors that have altered these wind conditions.

Retreating ice edge

The researchers at the Bjerknes Centre for Climate Research have also found that when winds from the Arctic draw more warm water to Norway from the south, it leads to more melting of the Arctic ice cover, which is why the ice edge is retreating northward.

This warming process is self-reinforcing through what is known as a feedback loop: with less ice on the marine surface in summer, more heat from the air is absorbed by the seawater, warming the Arctic even more.

Wind conditions in the Arctic are likely to vary naturally in the future as well. During certain periods, more ice will form around the North Pole. Nevertheless, in the long term an increase in anthropogenic emissions of greenhouse gases to the atmosphere could bring about permanent changes that determine the fate of Arctic ice. 

NorClim climate research project

Dr Medhaug’s research comprised part of the activities carried out under NorClim (2007-2011), a large-scale, nationally-coordinated project with the objective of enhancing knowledge about the regional climate of Norway and the North Atlantic Ocean. The project received funding under the Research Council of Norway’s NORKLIMA programme.

Collectively, research activities under the NorClim project have generated extensive knowledge about Norway’s future climate. Thanks to the research they have conducted, Norwegian climate researchers can make many valuable contributions to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, to be published in 2013.

 

 

Related news

Latest news

New partners in sensors and geothermal

Associate Professor Mona Mihailescu from University Politehnica of Bucharest, Romania visited CMR. She is also due to visit Iceland where her other partner in green energy is situated.

Resolutuions at Semcon's annual general meeting 2017

Semcon’s Annual General Meeting (AGM) was held on Wednesday April 26,

DNV GL launches new PSC Planner application

Classification society DNV GL has launched a new application on its My DNV GL portal

300 solutions that will change the world

Global Opportunity Explorer launch

Wind powered oil recovery concept moves closer to implementation

The DNV GL-led joint industry project,

Feeding the future with AKVA

AKVA group has seen a strong market response to the new AKVAconnect feeding system, released late 2016 into the Chilean market. Customer feedback has been very positive resulting in a strong increase in sales.

The Mohammed bin Rashid Al Maktoum Solar Park Phase II will be managed by GreenPowerMonitor monitoring solutions

The project forms part of the larger 1 GW Mohammed bin Rashid Al Maktoum Solar Park

Chalet and chaletino, oak flooring of exceptional length and width

Chalet and Chaletino from BOEN is parquet flooring made with exceptionally wide and long planks of the finest timber.

Fire in Vestdavit offices – Possible disruption of service

Vestdavit and all staff would like to express sincere thanks for the inquiries and good wishes sent to us by our industry partners,